The Legacy of Math Luminary John Conway, Lost to Covid-19

In modern mathematics, many of the biggest advances are great elaborations of theory. Mathematicians move mountains, but their strength comes from tools, highly sophisticated abstractions that can act like a robotic glove, enhancing the wearer’s strength. John Conway was a throwback, a natural problem-solver whose unassisted feats often left his colleagues stunned.

“Every top mathematician was in awe of his strength. People said he was the only mathematician who could do things with his own bare hands,” said Stephen Miller, a mathematician at Rutgers University. “Mathematically, he was the strongest there was.”

On April 11, Conway died of Covid-19. The Liverpool, England, native was 82.

Conway’s contributions to mathematics were as varied as the stories people tell about him.

“Once he shook my hand and informed me that I was four handshakes away from Napoleon, the chain being: [me]—John Conway—Bertrand Russell—Lord John Russell–Napoleon,” said his Princeton University colleague David Gabai over email. Then there was the time Conway and one of his closest friends at Princeton, the mathematician Simon Kochen, decided to memorize the world capitals on a whim. “We decided to drop the mathematics for a while,” Kochen said, “and for a few weeks we’d go home and do, like, the western bulge of Africa or the Caribbean nations.”

Conway had the tendency—perhaps unparalleled among his peers—of jumping into an area of mathematics and completely changing it.

“A lot of the objects he studied are thought of by other mathematicians the way that he thought of them,” Miller said. “It’s as if his personality has been superimposed on them.”

try this site
try this web-site
try this website
try what he says
try what she says
understanding
updated blog post
url
us
use this link
via
view
view it
view it now
view publisher site
view siteÂ…
view website
visit
visit here
visit homepage
visit our website
visit site
visit the site
visit the website
visit their website
visit these guys
visit this link
visit this page
visit this site
visit this site right here
visit this web-site
visit this website
visit website
visit your url
visite site
watch this video
web
web link
web site
weblink
webpage
website
website link
websites
what do you think
what google did to me
what is it worth
why not check here
why not find out more
why not look here
why not try here
why not try these out
why not try this out
you can check here
you can find out more
you can look here
you can try here
you can try these out
you can try this out
you could check here
you could look here
you could try here
you could try these out
you could try this out
your domain name
your input here
have a peek at this web-site
Source
have a peek here
Check This Out
this contact form
navigate here
his comment is here
weblink
check over here
this content
have a peek at these guys
check my blog
news
More about the author

Conway’s first big discovery was an act of self-preservation. In the mid-1960s he was a young mathematician looking to launch his career. On the recommendation of John McKay, he decided to try to prove something about the properties of a sprawling geometric object called the Leech lattice. It comes up in the study of the most efficient way to pack as many round objects in as little space as possible—an enterprise known as sphere packing.

To get a sense of what the Leech lattice is and why it’s important, first consider a simpler scenario. Imagine you wanted to fit as many circles as possible into a region of the standard Euclidean plane. You can do this by dividing the plane into one big hexagonal grid and circumscribing the largest possible circle inside each hexagon. The grid, called a hexagonal lattice, serves as an exact guide for the best way to pack circles in two-dimensional space.

In the 1960s, the mathematician John Leech came up with a different kind of lattice that he predicted would serve as a guide for the most efficient packing of 24-dimensional spheres in 24-dimensional space. (It later proved true.) This application to sphere packing made the Leech lattice interesting, but there were still many unknowns. Chief among them were the lattice’s symmetries, which can be collected into an object called a “group.”

In 1966, at McKay’s urging, Conway decided that he would discover the symmetry group of the Leech lattice, no matter how long it took.

“He sort of shut himself up in this room and said goodbye to his wife, and was [planning] to work all day every day for a year,” said Richard Borcherds, a mathematician at the University of California, Berkeley, and a former student of Conway’s.

But, as it turned out, the farewell was unnecessary. “He managed to calculate it in about 24 hours,” Borcherds said.

Rapid computation was one of Conway’s signature traits. It was a form of recreation for him. He devised an algorithm for quickly determining the day of the week for any date, past or future, and enjoyed inventing and playing games. He’s perhaps best known for creating the “Game of Life,” a mesmerizing computer program in which collections of cells evolve into new configurations based on a few simple rules.

After discovering the symmetries of the Leech lattice—a collection now known as the Conway group—Conway became interested in the properties of other similar groups. One of these was the aptly named “monster” group, a collection of symmetries that appear in 196,883-dimensional space.

Leave a Reply

Your email address will not be published. Required fields are marked *